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Abstract. A two component model of negative U centers coupled with the Fermi sea of itinerant fermions is
discussed in connection with high-temperature superconductivity of cuprates, and superfluidity of atomic
fermions. We examine the phase transition and the condensed state of this boson-fermion model (BFM)
beyond the ordinary mean-field approximation in two and three dimensions. No pairing of fermions and no
condensation are found in two-dimensions for any symmetry of the order parameter. The expansion in the
strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg-
Landau-Gor’kov equation and a zero upper critical field in any-dimensional BFM, which indicates that
previous mean-field discussions of the model are flawed. Normal and anomalous Green’s functions are
obtained diagrammatically and analytically in the condensed state of a simplest version of 3D BFM. A
pairing of bosons analogous to the Cooper pairing of fermions is found. There are three coupled condensates
in the model, described by the off-diagonal single-particle boson, pair-fermion and pair-boson fields. These
results negate the common wisdom that the boson-fermion model is adequately described by the BCS
theory at weak coupling.

PACS. 74.20.-z Theories and models of superconducting state – 74.20.Mn Nonconventional mechanisms
(spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal
Fermi liquid, Luttinger liquid, etc.) – 74.20.Rp Pairing symmetries (other than s-wave) –
74.25.Dw Superconductivity phase diagrams

1 Introduction

The experimental [1–6] and theoretical [7–10] evidence
for an exceptionally strong electron-phonon interaction
in novel superconductors is now so overwhelming that
even some advocates of the non-phononic mechanisms [11]
admit the fact. A few authors (see, for example [12–15])
explored a view that the extension of the BCS theory to-
wards the strong interaction between electrons and ion
vibrations describes the phenomenon. In this regime, pair-
ing takes place in real space due to a polaron collapse of
the Fermi energy [16], or due to a low density of carriers.
At first sight, bipolarons have a mass too large to be mo-
bile. Indeed, Anderson [17] introduced small bipolarons as
entirely localised objects explaining some unusual proper-
ties of chalcogenide glasses. However, it has been shown
more recently that the inclusion of the on-site Coulomb
repulsion leads to the favoured binding of intersite carri-
ers [18,19]. The intersite bipolarons can tunnel with an
effective mass of about 10 electron masses [15,18–20], and
account for a high critical temperature [21].

Soon after Anderson [17] and Street and Mott [22] in-
troduced localized pairs in amorphous semiconductors, a
two component model of negative U centers coupled with

a e-mail: a.s.alexandrov@lboro.ac.uk

the Fermi sea of itinerant fermions was employed to study
superconductivity in disordered metal-semiconductor al-
loys [23,24]. When the attractive potential U is large,
the model is reduced to localized hard-core bosons
spontaneously decaying into itinerant electrons and vice
versa, different from a non-converting mixture of mo-
bile charged bosons and fermions [25,26]. This boson-
fermion model (BFM) was applied more generally to
describe pairing electron processes with localization-
delocalization [27], and a linear resistivity in the normal
state of cuprates [28]. The model attracted more atten-
tion in connection with high-temperature superconduc-
tors [10,29–38], as an alternative to the bipolaron model
of cuprates with intrinsically mobile bipolarons [39]. In
particular, references [36,37] claimed that 2D BFM with
immobile hard-core bosons is capable to reproduce some
physical properties and the phase diagram of cuprates.
BFM has been also adopted for a description of superflu-
idity of atomic fermions scattered into bound (molecular)
states [40].

Most studies of BFM below its transition into a low-
temperature condensed phase applied a mean-field ap-
proximation (MFA), replacing zero-momentum boson op-
erators by c-numbers and neglecting the boson self-energy
in the density sum rule [29,30,32,33,36–38,40]. When the
bare boson energy is well above the chemical potential,
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the BCS ground state was found with bosons being only
virtually excited [29,30]. MFA led to a conclusion that
BFM exhibits features compatible with BCS character-
istics [32], and describes a crossover from the BCS-like
to local pair behaviour [38]. The transition was found
more mean-field-like than the usual Bose condensation,
i.e. characterized by a relatively small value of the fluctu-
ation parameter Gi [33].

At the same time our previous study of BFM [34]
beyond MFA revealed a crucial effect of the boson self-
energy on the normal state boson spectral function and
the transition temperature Tc. Reference [34] proved that
the Cooper pairing of fermions via virtual bosonic states
is impossible in any-dimensional BFM. It occurs only
simultaneously with the Bose-Einstein condensation of
real bosons. The origin of this simultaneous condensa-
tion lies in a softening of the boson mode at T = Tc

caused by its hybridization with fermions. The energy
of zero-momentum bosons is renormalized down to zero
at T = Tc, no matter how weak the boson-fermion cou-
pling and how large the bare boson energy are [34]. One
can also expect that the boson self-energy should quali-
tatively modify the phase transition and the whole con-
densed phase of BFM below Tc.

In this paper the phase transition and the condensed
state of BFM are examined beyond the ordinary mean-
field approximation in two and three dimensions. It is
shown that Tc = 0 K in the two-dimensional model, even
in the absence of any Coulomb repulsion, and the phase
transition is never a BCS-like second-order phase tran-
sition even in 3D BFM because of the complete boson
softening. A closed set of equations for fermion and bo-
son Green’s functions (GFs) is derived taking into ac-
count the self-energy effects in the condensed state of 3D
BFM. There exist a boson pair condensate along with the
fermion Cooper pair and the single-particle boson conden-
sate in the model. Remarkably, the Gor’kov expansion [41]
of GFs in the strength of the order parameter yields a zero
linear term at any temperature below Tc, and zero upper
critical field.

2 No Cooper pairing and condensation
in 2D BFM

2D BFM is defined by the Hamiltonian,

H =
∑

k,σ=↑,↓
ξkc

†
k,σck,σ + E0

∑
q

b†qbq

+ gN−1/2
∑
q,k

(
φkb

†
qc−k+q/2,↑ck+q/2,↓ + H.c.

)
, (1)

where ξk = −2t(cos kx + cos ky) − µ is the 2D energy
spectrum of fermions, E0 ≡ ∆B − 2µ is the bare boson
energy with respect to their chemical potential 2µ, g is
the magnitude of the anisotropic hybridization interac-
tion, φk = φ−k is the anisotropy factor, and N is the
number of cells. Here and further I take � = c = kB = 1
and the lattice constant a = 1. Reference [36] argued

that ’superconductivity is induced in this model from
the anisotropic charge-exchange interaction (gφk) between
the conduction-band fermions and the immobile hard-
core bosons’, and ‘the on-site Coulomb repulsion competes
with this pairing’ reducing the critical temperature Tc less
than by 25%. Also it has been argued [37], that the calcu-
lated upper critical field of the model fits well the experi-
mental results in cuprates.

Here I show that Tc = 0 K in the two-dimensional
model, equation (1), even in the absence of any Coulomb
repulsion, and the mean-field approximation is meaning-
less for any-dimensional BFM because of the complete bo-
son softening.

Replacing boson operators by c-numbers for q = 0 in
equation (1) one obtains a linearised BCS-like equation
for the fermion order-parameter (the gap function) ∆k,

∆k =
g̃2φk

E0N

∑
k′
φk′

∆k′ tanh(ξk′/2T )
2ξk′

, (2)

with the coupling constant g̃2 = g2(1 − 2nB), renormal-
ized by the hard-core effects. Using a two-particle fermion
vertex part in the Cooper channel one can prove that this
equation is perfectly correct even beyond the conventional
non-crossing approximation [34]. The problem with MFA
does not stem from this BSC-like equation, but from an
incorrect definition of the bare boson energy with respect
to the chemical potential, E0(T ). This energy is deter-
mined by the atomic density of bosons (nB) as (Eq. (9) in
Ref. [36])

tanh
E0

2T
= 1 − 2nB. (3)

While equation (2) is correct, equation (3) is incorrect
because the boson self-energy Σb(q, Ω) due to the same
hybridization interaction is missing. At first sight [36] the
self-energy is small in comparison to the kinetic energy
of fermions, if g is small. However Σb(0, 0) diverges loga-
rithmically at zero temperature [34], no matter how week
the interaction is. Therefore it should be kept in the den-
sity sum-rule, equation (3). Introducing the boson Green’s
function

D(q, Ω) =
1 − 2nB

iΩ − E0 −Σb(q, Ω)
(4)

one must replace incorrect equation (3) by

− T

N

∑
q,n

eiΩτD(q, Ω) = nB, (5)

where τ = +0, and Ω = 2πTn (n = 0,±1,±2...).
The divergent (cooperon) contribution to Σb(q, Ω) is

given by Figure 1 [34],

Σb(q, Ω) = − g̃2

2N

∑
k

φ2
k

× tanh[ξk−q/2/(2T )] + tanh[ξk+q/2/(2T )]
ξk−q/2 + ξk+q/2 − iΩ

, (6)
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Fig. 1. Diagram for the boson self-energy. Solid lines are the
fermion GFs. Vertex (dot) corresponds to the hybridization
interaction.

so that one obtains

Σb(q, 0) = Σb(0, 0) +
q2

2M∗ + O(q4) (7)

for small q and any anisotropy factor compatible with the
point-group symmetry of the cuprates. Here M∗ is the
boson mass, calculated analytically in reference [34] for the
isotropic exchange interaction and parabolic fermion band
dispersion (see also Ref. [35]). The BCS-like equation (2)
has a nontrivial solution for ∆k at T = Tc, if

E0 = −Σb(0, 0). (8)

Substituting equations (7, 8) into the sum-rule, equa-
tion (5), one obtains a logarithmically divergent integral
with respect to q, and

Tc =
const.∫
0 dq/q

= 0. (9)

The devastating result, equation (9) is a direct conse-
quence of the well-known theorem, which states that BEC
is impossible in 2D.

One may erroneously believe that MFA results [36,37]
can be still applied in three-dimensions, where BEC is pos-
sible. However, increasing dimensionality does not make
MFA a meaningful approximation for the boson-fermion
model. This approximation leads to a naive conclusion
that a BCS-like superconducting state occurs below the
critical temperature Tc � µ exp (−E0/zc) via fermion
pairs being virtually excited into unoccupied bosonic
states [29,30]. Here zc = g̃2N(0) and N(0) is the den-
sity of states (DOS) in the fermionic band near the Fermi
level µ. However, the Cooper pairing of fermions is im-
possible via virtual unoccupied bosonic states also in 3D
BFM. Indeed, equations (2, 8) do not depend on the di-
mensionality, so that the analytical continuation of equa-
tion (4) to real frequencies ω yields the partial boson
DOS as ρ(ω) = (1 − 2nB)δ(ω) at T = Tc and q = 0
in any-dimensional BFM. The Cooper pairing may occur
only simultaneously with the Bose-Einstein condensation
of real bosons in the exact theory of 3D BFM [34]. The
origin of the simultaneous condensation of the fermionic
and bosonic fields in 3D BFM lies in the softening of the
boson mode at T = Tc caused by its hybridization with
fermions.

Taking into account the boson damping and dispersion
shows that the boson spectrum significantly changes for all
momenta. Continuing the self-energy, equation (6) to real
frequencies yields the damping (i.e. the imaginary part of
the self-energy) as [34]

γ(q, ω) =
πzc

4qξ
ln

[
cosh(qξ + ω/(4Tc))

cosh(−qξ + ω/(4Tc))

]
, (10)

where ξ = vF /(4Tc) is a coherence length, and vF is the
Fermi velocity. The damping is significant when qξ � 1.
In this region γ(q, ω) = ωπzc/(8Tc) is comparable or even
larger than the boson energy ω. Hence bosons look like
overdamped diffusive modes, rather than quasiparticles
in the long-wave limit [34,35], contrary to the erroneous
conclusion of reference [31], that there is ‘the onset of
coherent free-particle-like motion of the bosons’ in this
limit. Only outside the long-wave region, the damping
becomes small. Indeed, using equation (10) one obtains
γ(q, ω) = ωπzc/(2qvF ) � ω, so that bosons at q � 1/ξ
are well defined quasiparticles with a logarithmic disper-
sion, ω(q) = zc ln(qξ) [34]. Hence the boson energy dis-
perses over the whole energy interval from zero up to E0.

The main mathematical problem with MFA in 3D
also stems from the density sum rule, equation (5) which
determines the chemical potential of the system and con-
sequently the bare boson energy E0(T ) as a function of
temperature. In the framework of MFA one takes the
bare boson energy in equation (2) as a temperature in-
dependent parameter, E0 = g̃2N(0) ln(µ/Tc) [33], or
determines it from the conservation of the total num-
ber of particles neglecting the boson self-energy, equa-
tion (3) [30,36,38,40]. Then equation (2) looks like the
conventional linearized Ginzburg-Landau-Gor’kov equa-
tion [41] with a negative coefficient α ∝ T − Tc at T < Tc

in the linear term. Then one concludes that the phase
transition is almost the conventional BCS-like transition,
at least at E0 � Tc [29,30,33]. These findings are math-
ematically and physically erroneous. Indeed, the term of
the sum in equation (5) with Ωn = 0 is given by the
integral

T

∫
dq
2π3

1
E0 +Σb(q, 0)

. (11)

The integral converges, if and only if E0 � −Σb(0, 0).
In fact,

E0 +Σb(0, 0) = 0 (12)

is strictly zero in the Bose-condensed state, because µb =
−[E0+Σb(0, 0)] corresponds to the boson chemical poten-
tial relative to the lower edge of the boson energy spec-
trum. More generally, µb = 0 corresponds to the appear-
ance of the Bogoliubov-Goldstone mode due to a broken
symmetry below Tc. This exact result makes the BSC
equation (2) simply an identity [34] with α(T ) ≡ 0 at any
temperature below Tc. On the other hand, MFA violates
the density sum-rule, predicting the wrong negative α(T )
below Tc.

Since α(T ) = 0, one may expect that the conventional
upper critical field, Hc2(T ) is zero in BFM. To determine
Hc2(T ) and explore the condensed phase of 3D BFM, one
can apply the Gor’kov formalism [41], as described below.

3 Normal and anomalous Green’s functions
of 3D BFM: pairing of bosons

Let us now explore a simplified version of 3D BFM
in an external magnetic field B = ∇× A neglecting the



58 The European Physical Journal B

Fig. 2. Diagrams for the normal and anomalous fermion GFs.
Zig-zag arrows represent the single-particle Bose condensate
φ0, dotted lines are the boson GFs.

hard-core effects,

H =
∫
dr

∑
s

ψ†
s(r)ĥ(r)ψs(r) + g[φ(r)ψ†

↑(r)ψ
†
↓(r) + H.c.]

+ E0φ
†(r)φ(r), (13)

where ψs(r) and φ(r) are fermionic and bosonic fields,
s =↑, ↓ is the spin, ĥ(r) =− [∇+ ieA(r)]2/(2m)−µ is the
fermion kinetic energy operator. Here the volume of the
system is taken as V = 1.

The Matsubara field operators, Q =
exp(Hτ)Q(r) exp(−Hτ), Q̄ = exp(Hτ)Q†(r) exp(−Hτ)
(Q ≡ ψs, φ) evolve with the imaginary time
−1/T � τ � 1/T as

−∂ψ↑(r, τ)
∂τ

= ĥ(r)ψ↑(r, τ) + gφ(r, τ)ψ̄↓(r,τ), (14)

∂ψ̄↓(r,τ)
∂τ

= ĥ∗(r)ψ̄↓(r,τ) − gφ̄(r, τ)ψ↑(r,τ), (15)

−∂φ(r,τ)
∂τ

= E0φ(r,τ) + gψ↓(r,τ)ψ↑(r,τ). (16)

The theory of the condensed state can be formulated
with the normal and anomalous fermion GFs [41],
G(r, r′, τ) = −〈Tτψs(r, τ)ψ̄s(r′,0)〉, F+(r, r′, τ) =
〈Tτ ψ̄↓(r,τ)ψ̄↑(r′, 0)〉, respectively, where the operation Tτ

performs the time ordering. Fermionic and bosonic fields
condense simalteneously [34]. Following Bogoliubov [42]
the bosonic condensate is described by separating a large
matrix element φ0(r) in φ(r, τ) as a number, while the
remaining part φ̃(r, τ) describes a supracondensate field,
φ(r, τ) = φ0(r) + φ̃(r, τ). Then using equation (16) one
obtains

gφ0(r) = ∆(r) ≡ − g2

E0
F(r, r, 0+), (17)

where F(r, r′, τ) = 〈Tτψ↓(r,τ)ψ↑(r′, 0)〉. The equations for
GFs are obtained by using equations (14–16) and the di-
agrammatic technique [43] in the framework of the non-
crossing approximation [44], as shown in Figures 2 and 3.

Fig. 3. Diagrams for the supracondensate boson GFs. The
Cooper-pairing of fermions leads to the Cooper-pair-like boson
condensate, described by the boson anomalous GF, B+.

An important novel feature of BFM is a pairing of
supracondensate bosons, caused by their hybridization
with the fermionic condensate, as follows from the last
diagram in Figure 3. Hence, one has to introduce an
anomalous supracondensate boson GF, B+(r, r′, τ) =
〈Tτ

¯̃
φ(r,τ) ¯̃

φ(r′, 0)〉 along with the normal boson GF,
D(r, r′, τ) = −〈Tτ φ̃(r, τ) ¯̃

φ(r′,0)〉. The diagrams, Fig-
ures 2 and 3, are transformed into analytical equations
for the time Fourier-components of the fermion GFs
with the Matsubara frequencies ω = πT (2n + 1) (n =
0,±1,±2, ...) as

[iω − ĥ(r)]Gω(r, r′) = δ(r − r′) −∆(r)F+
ω (r, r′)

− g2T
∑
ω′

∫
dxG−ω′(x, r)Dω−ω′(r,x)Gω(x, r′)

− g2T
∑
ω′

∫
dxF+

ω′(r,x)Bω+ω′(r,x)F+
ω (x, r′), (18)

[−iω − ĥ∗(r)]F+
ω (r, r′) = ∆∗(r)Gω(r, r′)

− g2T
∑
ω′

∫
dxGω′(r,x)Dω′−ω(x, r)F+

ω (x, r′)

+ g2T
∑
ω′

∫
dxF−ω′(r,x)B+

−ω−ω′(r,x)Gω(x, r′)

and,

(iΩ − E0)DΩ(r, r′) = δ(r − r′)

− g2T
∑
ω′

∫
dxGω′(r,x)GΩ−ω′(r,x)DΩ(x, r′)

− g2T
∑
ω′

∫
dxFω′(r,x)FΩ−ω′(r,x)B+

Ω(x, r′), (19)

(−iΩ − E0)B+
Ω(r, r′) =

g2T
∑
ω′

∫
dxF+

−ω′(r,x)F+
−Ω+ω′(r,x)DΩ(x, r′)

− g2T
∑
ω′

∫
dxG−ω′ (x, r)Gω′−Ω(x, r)B+

Ω(x, r′).

for the boson GFs with B(r, r′, τ) = 〈Tτ φ̃(r,τ)φ̃(r′, 0)〉.
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4 Gor’kov expansion

These equations can be formally solved in the homoge-
neous case without the external field, A = 0. Trans-
forming into the momentum space yields GFs’ time-space
Fourier components as

G(k, ω) = − iω̃∗ + ξk

|iω̃ − ξk|2 + |∆̃(k, ω)|2 , (20)

F+(k, ω) =
∆̃∗(k, ω)

|iω̃ − ξk|2 + |∆̃(k, ω)|2 , (21)

and

D(q, ω) = − iΩ̃∗ + E0

|iΩ̃ − E0|2 + |Γ (q, Ω)|2 , (22)

B+(q, ω) =
Γ ∗(q, Ω)

|iΩ̃ − E0|2 + |Γ (q, Ω)|2 , (23)

where ω̃ ≡ ω + iΣf (k, ω), Ω̃ ≡ Ω + iΣb(q, Ω), and ξk =
k2/(2m)−µ. The fermionic order parameter, renormalised
with respect to the mean-field ∆ due to the formation of
the boson-pair condensate, is given by

∆̃(k, ω) = ∆+ g2T
∑
ω′

∫
dq
2π3

F+(k − q, ω′)B(q, ω + ω′),

(24)
and the boson-pair order parameter, generated by the hy-
bridization with the fermion Cooper pairs, is

Γ (q, Ω) = g2T
∑
ω′

∫
dk
2π3

F(k, ω′)F(q−k, Ω−ω′). (25)

Hence, there are three coupled condensates in the model
described by the off-diagonal fields gφ0, ∆̃, and Γ , rather
than two, as in MFA. At low temperatures all of them
have about the same magnitude, as the fermion, Figure 4,
and boson, Figure 1, self-energies,

Σf(k, ω) = −g2T
∑
ω′

∫
dq
2π3

G(q − k,−ω′)D(q, ω − ω′),

(26)

Σb(q, Ω) = −g2T
∑
ω′

∫
dq
2π3

G(k, ω′)G(q − k, Ω − ω′),

(27)
respectively.

On the other hand, when the temperature is close to Tc

(i.e. Tc−T � Tc), the boson pair condensate is weak com-
pared with the single-particle boson and the Cooper pair
condensates. In this temperature range Γ , equation (25)
is of the second order in ∆, Γ ∝ ∆2, so that the anoma-
lous boson GF can be neglected, since ∆ is small. The
fermion self-energy, equation (26) is a regular function of
ω and k, so that it can be absorbed in the renormalized
fermion band dispersion. Then the fermion normal and
anomalous GFs, equations (20, 21) look like the familiar
GFs of the BCS theory, and one can apply the Gor’kov
expansion [41] in powers of∆(r) to describe the condensed

Fig. 4. The fermion self-energy.

phase of BFM in the magnetic field near the transition.
Using equation (18) one obtains to the terms linear in ∆

∆∗(r) =
g2

E0
T

∑
ωn

∫
dxG(n)

−ωn
(x, r)∆∗(x)G(n)

ωn
(x, r). (28)

The spatial variations of the vector potential are small
near the transition. If A(r) varies slowly, the normal
state GF, G(n)

ω (r, r′) differs from the zero-field normal
state GF, G(0)

ω (r − r′) only by a phase [41] G(n)
ω (r, r′) =

exp[−ieA(r) · (r − r′)]G(0)
ω (r − r′). Expanding all quanti-

ties near the point x = r in equation (28) up to the second
order in x − r inclusive, one obtains the linearised equa-
tion for the fermionic order parameter as

γ[∇− 2ieA(r)]2∆(r) = α∆(r), (29)

where

α = 1 +
Σb(0, 0)
E0

≈ 1 − g2N(0)
E0

ln
µ

T
, (30)

and γ ≈ 7ζ(3)v2
F g

2N(0)/(48π2T 2E0).

5 Conclusion

The coefficient α(T ) disappears in equation (29), since
E0 = −Σb(0, 0) at and below Tc, equation (12). It means
that the phase transition is never a BCS-like second-order
phase transition even at large E0 and small g. In fact, the
transition is driven by the Bose-Einstein condensation of
real bosons with q = 0, which occur due to the complete
softening of their spectrum at Tc. Remarkably, the conven-
tional upper critical field, determined as the field, where a
non-trivial solution of the linearised Gor’kov equation (29)
occurs, is zero in BFM, Hc2(T ) = 0. It is not a finite
Hc2(T ) found in reference [37] using MFA.

This qualitative failure of MFA might be rather unex-
pected, if one believes that bosons in equation (1) play the
same role as phonons in the BCS superconductor. This is
not the case for two reasons. The first one is the density
sum-rule, equation (5), for bosons which is not applied
to phonons. The second being that the boson self-energy
is given by the divergent (at T = 0) Cooperon diagram,
while the self-energy of phonons is finite at small coupling.

In the homogeneous case ∆(T ) should be determined
from equation (5) rather than from the BCS-like equa-
tion (2), which is actually the identity. To get an insight
into the magnetic properties of the condensed phase one
has to solve equations (18, 19) and equation (5) keeping
the non-linear terms. Even at temperatures well below Tc

the condensed state is fundamentally different from the
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MFA ground state, because of the pairing of bosons. The
latter is similar to the Cooper-like pairing of supracon-
densate 4He atoms [45], proposed as an explanation of
the small density of the single-particle Bose condensate
in superfluid Helium-4. The pair-boson condensate should
significantly modify the thermodynamic properties of the
condensed BFM compared with the MFA predictions. The
common wisdom that at weak coupling the boson-fermion
model is adequately described by the BCS theory, is there-
fore negated by our theory.

I highly appreciate enlightening discussions with A.F. Andreev,
L.P. Gor’kov, V.V. Kabanov, A.I. Larkin, A.P. Levanyuk, R.
Micnas, and S. Robaszkiewicz, and support by the Leverhulme
Trust (UK) via Grant F/00261/H.
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